

Sefydliad y Gwyddorau Biolegol, Amgylcheddol a Gwledig IBERS ABERYSTWYTH Institute of Biological, Environmental and Rural Sciences

Decreasing Methane Production in the Rumen

Jamie Newbold

Potential for mitigation of GHG emissions from livestock

ü Lifestyle change (i.e. less reliance on products with a high carbon cost associated with their production and reducing food waste)

ü Changing farming practice

ü Using new technologies

(Gill et al. 2009. *Mitigating climate change: the role of domestic livestock*. **Animal** doi:10.1017/S1751109004662)

Routes for impact of management and technology interventions designed to improve productivity on GHG emissions from livestock (Gill et al. 2009)

The relationship between live weight gain (LWG) of cattle and methane production per kg of gain

(Kurihara et al 1997, Klieve. and Ouwerkerk 2007, Howden and Reyenga 1999)

Potential for mitigation of GHG emission from livestock

ü Lifestyle change (i.e. less reliance on products with a high carbon cost associated with their production and reducing food waste

ü Changing farming practice

üUsing new technologies

(Gill et al. 2009. *Mitigating climate change: the role of domestic livestock*. **Animal** doi:10.1017/S1751109004662)

Methane production a microbially driven process to remove hydrogen

Methanogenesis associated with protozoa (%)

CH ₄ production	PF	F	s.e.m.	Р
L per day	26.0	35.2	2.82	0.049
L per kg LW	0.52	0.71	0.044	0.024
L per kg DMI	21.6	29.0	1.41	0.006

PF: protozoa-free lambs; F: faunated lambs. LW: liveweight; DMI: dry matter intake

Is there a relationship between methane emissions and protozoal numbers?

Methane production a microbially driven process to remove hydrogen

Methane production by lambs supplemented with fumaric acid

Wood et al. (2009)

Methods of methane mitigation:

all and the state

Redirection of metabolic hydrogen

Control AberAvon

16S

Methane production a microbially driven process to remove hydrogen

Literature summary of added fat vs CH₄ production

Y = 5.562 (SE = 0.590) \times % added fat; r² = 0.67; P = 0.004

	Barley megalac	Barley linseed	Naked oats	Husked oats	SED
Methane (I/d)	36	28	24	36	4.7*
Methane (I/ kg intake)	31	24	21	31	3.4*
LWG (g/d)	106	105	107	119	19.3
Wool growth (g)	8	7.5	8.4	7.8	0.827
Methane / Kg LWG	447	286	232	320	106

Methods of methane mitigation

Inhibition of methanogens

The effect of a yeast based probiotic, Allicin an extract from garlic and the essential oil analogue on methane production by and methanogen numbers in the rumen of store lambs

Effect of Supplements on Methane Production by Lactating Dairy Cows

DEFRA Project AC0209

Effect of diet at weaning

Bacterial profile determined by T-FRLP of the 16S rDNA gene after 4 months on identical diets

Future plans

- Continue to investigate the use of plant extracts.
- Try to understand the microbial basis of responses.
- Try to understand the effect of early life nutrition on microbial populations in the rumen.

- Investigate the possibility of a link between the host genome and the rumen microbiome.
- Renew efforts to understand the role and control of protozoa in the rumen.

Questions

